ÉCOLE NATIONALE DES INGÉNIEURS DES TRAVAUX RURAUX ET DES TECHNIQUES SANITAIRES

CONCOURS D'ENTRÉE 1991

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

OPTION BIOLOGIE-MATH-TIQUES

DURÉE: 3 HEURES

Problème:

Préambule

Dans ce problème n est un entier naturel non nul, $\mathcal{M}_n(\mathbb{C})$ désigne le \mathbb{C} -espace vectoriel des matrices carrées d'ordre n à éléments dans \mathbb{C} corps des complexes.

 $\mathcal{M}_1(\mathbb{C})$ et \mathbb{C} sont identifies de façon habituelle. I_n désigne la matrice unité de $\mathcal{M}_n(\mathbb{C})$.

M étant une matrice de $\mathcal{M}_n(\mathbb{C})$ et φ un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension n, on note respectivement $\mathrm{Sp}(M)$ et $\mathrm{Sp}(\varphi)$ les ensembles de valeurs propres de M et φ , et $E_\lambda(M)$ (resp. $E_\lambda(\varphi)$) le sous-espace propre associé à une valeur propre λ de M (resp. φ). Enfin on désigne par f_M l'endomorphisme de \mathbb{C}^n qui admet pour matrice M dans la base canonique de \mathbb{C}^n , les vecteurs de \mathbb{C}^n sont identifies aux matrices colonnes de leurs coordonnées dans la base canonique de \mathbb{C}^n .

Partie I

- **1.** Soient *A* et *B* deux matrices de $\mathcal{M}_3(\mathbb{C})$ telles que AB = BA.
 - (a) Soit λ une valeur propre de A, démontrer que : $f_B(E_\lambda(A))$ est inclus dans $E_\lambda(A)$.
 - (b) Démontrer qu'il existe un vecteur non nul de \mathbb{C}^3 qui est vecteur propre de f_A et f_B .
 - (c) Démontrer que si A a trois valeurs propres distinctes alors f_A et f_B se diagonalisent dans la même base de \mathbb{C}^3 . Cette propriété est-elle vraie pour toute matrice A diagonalisable de $\mathcal{M}_3(\mathbb{C})$?
- **2.** On suppose, dans cette question, que A et B sont deux matrices de $\mathcal{M}_n(\mathbb{C})$, $n \geq 2$, quelconques. On considère l'équation :

$$AM = MB \tag{1}$$

où M est une matrice inconnue de $\mathcal{M}_n(\mathbb{C})$. On appelle E l'ensemble des solutions de (1). On définit de plus deux applications φ et ψ par :

$$\forall M \in \mathscr{M}_n(\mathbb{C}), \ \varphi(M) = AM \ \text{et} \ \psi(M) = MB.$$

Puis $u(M) = \varphi(M) - \psi(M)$ définit une application u.

- (a) Démontrer que φ , ψ et u sont des endomorphismes de $\mathcal{M}_n(\mathbb{C})$. Comparer $\varphi \circ \psi$ et $\psi \circ \varphi$, $\operatorname{Sp}(A)$ et $\operatorname{Sp}(\varphi)$, $\operatorname{Sp}(B)$ et $\operatorname{Sp}(\psi)$.
- (b) Soit $\lambda \in \operatorname{Sp}(A)$ et $X \neq 0$, $X \in E_{\lambda}(A)$, $\mu \in \operatorname{Sp}({}^{t}B)$ et $Y \neq 0$, $Y \in E_{\mu}({}^{t}B)$. Démontrer que la matrice $X^{t}Y$ est un vecteur propre de u.
- (c) Soit $\beta \in \operatorname{Sp}(u)$ et $Y \in \mathscr{M}_n(\mathbb{C})$ un vecteur propre associé.
 - i. Montrer que pour tout entier naturel k, $A^kY = Y(\beta I_n + B)^k$.
 - ii. En déduire que pour tout polynôme $P \in \mathbb{C}[X]$, $P(A)Y = YP(\beta I_n + B)$.
 - iii. On suppose que le polynôme caractéristique χ_A s'écrit

$$\chi_A = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)^{\alpha_\lambda}.$$

En déduire qu'il existe $\lambda \in \operatorname{Sp}(A)$ et $\mu \in \operatorname{Sp}(B)$ telles que $\beta = \lambda - \mu$.

(d) Démontrer l'équivalence : $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset \Leftrightarrow u$ bijective.

(e) Dans cette question on prend n = 3,

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

- i. Déterminer Sp(A), Sp(B) et Sp(u).
- ii. Déterminer *E. E* contient-il une matrice inversible?
- iii. Résoudre l'équation :

$$AM = MB + 3M \tag{2}$$

M inconnue.

- iv. En déduire que u est diagonalisable.
- 3. On suppose que A et B diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ et on désigne par $(X_1, X_2, ..., X_n)$ et $(Y_1, Y_2, ..., Y_n)$ des bases respectives de vecteurs propres de A et tB . En considérant la famille $(X_i{}^tY_j)_{1 \le i,j \le n}$, montrer que u est diagonalisable.
- **4.** Déterminer le nombre de des solutions de l'équation matricielle $M^2 = A$ où A est définie en **2. e)**, M matrice inconnue.

Partie II

On se propose de résoudre une équation matricielle. On donne

$$A = \begin{pmatrix} 12 - 2i & -6 - 2i & 6 + 2i \\ -6 - 2i & 3 - 5i & -3 - i \\ 6 + 2i & -3 - i & 3 - 5i \end{pmatrix}$$

et l'équation

$$M^3 = A \tag{3}$$

où M est une matrice inconnue.

- 1. Déterminer Sp(A) et les vecteurs propres de A.
- 2. Soit $P = \begin{pmatrix} b & c & 2 \\ a+b & c+d & -1 \\ a-b & d-c & 1 \end{pmatrix}$. Déterminer une relation entre les paramètres complexes a,b,c,d pour que

P soit inversible.

Dans ce cas calculer $P^{-1}AP$.

- **3.** Démontrer que l'on peut exprimer les matrices M diagonalisables vérifiant (3) à l'aide d'une matrice P inversible, de P^{-1} et de j (j racine cubique non réelle de 1).
- **4.** On suppose qu'il existe M non diagonalisable vérifiant (3).
 - (a) Démontrer que M est semblable à une matrice du type

$$\left(\begin{array}{ccc}
\alpha & \beta & 0 \\
\gamma & \delta & 0 \\
0 & 0 & h
\end{array}\right)$$

où $\alpha, \beta, \gamma, \delta$ et h sont des complexes. Préciser h.

(b) On pose $B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Étudier $\operatorname{Sp}(B)$, calculer B^3 , établir que :

$$(B - wI_2)(B - wjI_2)(B - wj^2I_2) = 0,$$

où w est un nombre complexe que l'on précisera.

(c) En étudiant le rang de $(B-wI_2)$, conclure quant à l'hypothèse envisagée dans cette question. Conclure quant aux solutions de (3).

FIN